

# **UWB Communication using Compressed Sensing**

Robert Ifraimov, Kfir Cohen, Idan Shmuel, Yair Keller, Yonina C. Eldar

# **Theoretical Background**

| Motivation                                                           | Channel Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ultra-wideband (UWB) wireless technology advantages:                 | • Packet based wireless communication, during which $a_1 \qquad a_2 \qquad a_1 \land a_2 \qquad a_1 \land a_2 \land a_2 \land a_1 \land a_2 \land a_2 \land a_1 \land a_2 \land $ |  |
| High data rate                                                       | the channel is linear time invariant $\hat{\Lambda}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Frequency diversity can be exploited                                 | • The channel contains L resolvable echoes of the input $\begin{array}{c} f(t) \\ \hline 0 \end{array} t$ $\begin{array}{c} f(t) \\ \hline 0 \end{array} t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| FCC Unlicensed commercial deployment due to low transmitted spectral | with gain $a_l$ . Channel response: $h_{ch}(t) = \sum_{l=1}^{L} a_l \delta(t - \tau_l) + z(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| power density [dBm/Hz]                                               | <ul> <li>Zero mean additive white circular symmetric Gaussian noise is added z(t)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Restrictions: Short range and High rate ADC is needed                | • The parameters $\{a_l, \tau_l\}$ are unknown to the transmitter and the receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

We consider IEEE 802.15.4a channel model, particularly sparse CM1 – Line of Sight Residential  $\bullet$ Our goal is estimating  $H_{ch}(f)$  in order to make data detection possible

We propose sub-Nyquist hardware implementation for channel estimation

# Nyquist Channel Estimation

- Transmitter uses a trinary  $\{-1, 0, 1\}$  direct sequence (DS)  $a_{DS}[n]$  which is N=511 chips length to spread spectrum data symbols ~1Mbps known training sequence (for channel estimation) or data (for data detection) is multiplied by the direct sequence and sent in 500MHz DAC
- Transmitted signal is:  $x(t) = \gamma \sum_{i \in Z} s_i \sum_{m=0}^{N-1} g_{SF}(t mT_c iNT_c) a_{DS}[m]$



- Complying Nyquist sampling rate requires a high rate ADC
- For channel estimation, an accumulator is used to estimate the channel
- For data detection, rake receiver uses estimated channel
- Channel z(t)Transmitter

Sub-Nyquist Model

## Sub-Nyquist Channel Estimation

- We want to sample less bands (q time slower than Nyquist), yet maintain the frequency selectivity to some degree
- Transmitter uses signal whose frequency support is a subset  $\mathcal{L}$  of the full bandwidth
- The transmitter will transmit only on M FFT coefficients that are selected by masking DS  $b_{DS} = IFFT_N \{FFT_N \{a_{DS}\} [k], k \in \mathcal{L} \}$
- Sampling is performed by a low rate ADC
- Use sparse recovery (e.g. OMP) to reconstruct the sparse signal
- Seeking wide frequency aperture alongside a single analog branch Foldable method was chosen where we aliases through sampling
- The N taps are split into q groups of size M
- Active set is chosen to be self foldable, such that after sampling by 1/q Nyquist rate, all active coefficients are retraceable:

 $\mathcal{L} \cap \{m + M \cdot i\}_{i=0}^{q-1} \text{ for } m = 0, ..., M-1$ 

FFT taps Illustration: N=24, q=4, M=6





### **Data Detection**

Data detection uses the same front end as the channel estimation phase

 $Y[k] = sH[k]A_{DS}[k] + Z[k], k \in \mathcal{L}$ 

• To detect the symbol we use the  $A_{DS}$  and  $H_{ch}$  matching filter that was found in channel estimation stage

 $R[k] = s + \frac{A_{DS}^{*}[k]H^{*}[k]}{||H[k]||^{2}||A_{DS}[k]||^{2}}Z[k], k \in \mathcal{L}$ 

• The maximum likelihood estimator under additive Gaussian noise is given by the frequency domain

$$\hat{S}_{soft} = \frac{1}{M} \sum_{k \in \mathcal{L}} R[k]$$

• Hard decoding is applied on  $\hat{s}_{soft}$  by finding the nearest QPSK symbol

## **Simulation Results**

RMSE vs. E<sub>b</sub>/N<sub>0</sub>, q=4, OMF

- Matlab simulation compare results for Nyquist, Foldable and \*Direct sample methods
- \*Direct FFT Sampling: Randomly select M coefficients to sample from full rate (not feasible)
- Measuring performance using energy capture and RMS error:  $\text{RMSE}\left(h,\hat{h}\right) = \sqrt{\frac{1}{N}\sum_{n=1}^{N-1} \left|h_{\mathcal{T},n} - \hat{h}_{\mathcal{T},n}\right|^2}.$
- Performance of data detection through Error Vector Magnitude (EVM):  $EVM(s, \hat{s}) = \frac{1}{J} \sqrt{\sum_{i=1}^{J} \|s_i - \hat{s}_i\|^2}$

#### **Conclusions:**





Analog acquisition using a low rate ADC and standard front-end can be performed to detect data in multipath channels For q=8, only 12% of the energy is dropped at estimation and EVM raised by factor 2 only at EbN0 of 0dB at data detection stage

# **Demo system**



## System Implementation

- The demo system illustrates the application of sub-Nyquist sampling to QPSK UWB signals
- In the system ~250Kbps data rate is applied, which spreads to 125 MHz bandwidth
- 2 channels are active for I and Q in both AWG and sampler
- The channel response and noise are modeled before the packet transmitted through AWG
- The system implemented on NI PXIe chassis with signal generator – NI PXIe-5451 AWG and receiver – NI 5761 digitizer samples the signals directly at 125/64/32 MSps to achieve down to 1/8 of the signal's Nyquist rate



#### References

- 1. K. M. Cohen, C. Attias, B. Farbman, I. Tselniker, and Y. C. Eldar, "Channel estimation in uwb channels using compressed sensing," in Proc. IEEE ICASSP-14, Florence, Italy, May 2014
- 2. M. Win and R. Scholtz, "Ultra-wide bandwidth time-hopping spreadspectrum impulse radio for wireless multiple-access communications," Communications, IEEE Transactions on, vol. 48, no. 4, pp. 679–689, Apr 2000
- 3. J. Paredes, G. Arce, and Z. Wang, "Ultra-wideband compressed sensing: Channel estimation," Selected Topics in Signal Processing, IEEE Journal of, vol. 1, no. 3, pp. 383–395, Oct 2007

| Contact Us      |                             |            |
|-----------------|-----------------------------|------------|
| Robert Ifraimov | rifraimov@tx.technion.ac.il | (Technion) |
| Yonina Eldar    | yonina@ee.technion.ac.il    | (Technion) |
| SAMPL LAB       | http://sampl.technion.ac.il |            |